• Sign In to gain access to subscriptions and/or My Tools.
Impact Factor:0.917 | Ranking:Psychology 64 out of 76 | Psychology, Experimental 80 out of 85
Source:2016 Release of Journal Citation Reports, Source: 2015 Web of Science Data

How Little Do We Need for 3-D Shape Perception?

  1. Chetan Nandakumar
  2. Antonio Torralba§
  3. Jitendra Malik#
  1. # Vision Science Graduate Program (Department of Electrical Engineering and Computer Science), University of California, Berkeley, Berkeley, CA, USA
  2. § Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
  1. e-mail: chetan{at}berkeley.edu


How little do we need to perceive 3-D shape in monocular natural images? The shape-from-texture and shape-from-shading perspectives would motivate that 3-D perception vanishes once low-level cues are disrupted. Is this the case in human vision? Or can top – down influences salvage the percept? In this study we probe this question by employing a gauge-figure paradigm similar to that used by Koenderink et al (1992, Perception & Psychophysics 52 487 – 496). Subjects were presented degraded natural images and instructed to make local assessments of slant and tilt at various locations thereby quantifying their internal 3-D percept. Analysis of subjects' responses reveals recognition to be a significant influence thereby allowing subjects to perceive 3-D shape at high levels of degradation. Specifically, we identify the ‘medium-blur’ condition, images approximately 32 pixels on a side, to be the limit for accurate 3-D shape perception. In addition, we find that degradation affects the perceived slant of point-estimates making images look flatter as degradation increases. A subsequent condition that eliminates texture and shading but preserves contour and recognition reveals how bottom – up and top – down cues can combine for accurate 3-D shape perception.

Article Notes

  • Corresponding author.

  • Received June 29, 2010.
  • Revision received February 16, 2011.
| Table of Contents